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Introduction

I proposed several materials for Clinical Mathematics Education in [1] such
as dynamical graphs(representing cause and effect), strategy games(equivalence
relations generated by simple basic relations), and various inverse problems in
arithmetics(techniques, skills, arts and structures in the world of numbers). I
also developped in [2] the theory of dynamical graphs in the case of reduced
divisor sums.

In this note, I will give a brief review of a theory of dynamical graphs(see [4] for
details), and a detailed account in the case of Reversed Difference as an example.

§1. A Review of Dynamical Graphs

An oriented graph G = (V, E) is called dynamical(or simply a dynagraph), if
the set of vertices V' = {v} is an at most countable(i.e. finite or countable) set,
and the outgoing degree of every vertex is 1(constant). the set of (oriented) edges
E C V x V satisfies the following condition:

For any v € V| there exists one and only one vertex w € V with
e=(v,w) € E.

An element v of V' is called a verter, and e = (v,w) of E is called an (ori-
ented)edge or arrow, where v is called a source and w is called a target of the

arrow e.

*Fac. of Education, Mie University



In a word, a dynamical graph is nothing but an at most countable oriented

graph whose any vertex v has only one outgoing arrow from wv.

Proposition 1 The set D(V') of dyanamical graphs on V is bijective to the set
Map(V, V') of the maps of V' to itself. The correspondence is given as follows.
Given f € Map(V,V), take the set E = {(v, f(v)) | v € V} of pairs as hte
graph of f, then G(f) = (V, E(f)) is a dynamical graph.
Conversely, given a dynamical graph G = (V, E), for any v € V' we have only
one vertex w € V with (v,w) € E. So let f(v) =w. Denoting f by f(G), we get

that G = G(f(G)) and [ = f(G(f))-

The mapping f : V — V gives a dynamical system on the discrete space V'
with discrete times:

fiVXN—V, (vn)— f"(v),

where N denotes the set of all natural numbers.
Two mappings f,g : V — V are called isomorphic, if there exists a bijection
¢ : V =V (called an isomorphism) satisfying the equality

p(f"(v) = g" (),  (VweVineN),

that is, the following diagram commutes:

f
VXN —V
gpxid{ {gp
V x N %

This condition is equivalent with the single equality

pof=goop.

Isomorphic mappings are denoted by f = g, and the dynamical graphs G(f)
and G(g) corresponding to isomorphic mappings f,g: V — V are called isomor-
phic and denoted by G(f) = G(g).

Remark 1. The notion of equivalences of dynamical graphs can be weakened
as an isomorphism of unoriented graphs, and be strengthened so that ¢ is an



isomorhism only if p o f = f o . We call the former a weak isomorphism, and
the latter an automorphism .

Remark 2. An at most countable (unoriented) graph G = (V, E) is called
dynamicalizable, if there exists a suitable assignment of the directions of edges
which makes G dynamical. The resulting dynamical graph G = (V, E) is called
a dynamicalization of the graph G. Note that dynamicalizations are, in general,
not unique.

The degree of a vertex of a graph is usualy defined as a number of connecting
edges to this vertex. In the case of dynamical graphs, there exists only one
outgoing edge for every vertex v, so we will define it the number of incoming
edges of the vertex v, or of arrows with v as a target, i.e. deg(v) = [{w €
V| (w,v) € E}|. Note, for each vertex v € V, its degree as of a graph G is larger
by 1 than the degree as the dynamicalization G of G, i.e.

degg(v) = dega(v) + 1.

Now, we give a few definitions about dynamical graphs. Let G = (V, E) and
G' = (V', E') be dynamical graphs. G’ is called a dynamical subgraph (or simply
subgraph) of G, if V' C V and E' C E.

As in Proposition 1, the set of dynamical subgraphs of G = (V, E) is bijective to
the set of invariant subsets of V under the mapping f = f(G). For an f-invariant
subset W C V, the dynamical graph (W, E(f|W)) is a subgraph of G, and vice
versa.

For a vertex v € V, the set

VFTw)={weV |w= f*) for some a >0}

is called the future of v. For a subset U C V, VT(U) = U,y V1 (v) is called the
future of U.
For a vertex v € V, the set

Vo) ={weV |v= f%w) for some a > 0}

is called the past of v. For a subset U C V., V7 (U) = UyeyV ™ (v) is called the
past of U.

A vertex v € V has a life n (and denoted by ¢(v) = n), if there exists a natural
number n such that v € f4(V) (0 <a<n-—1)and v ¢ f*(V). If such number n



does not exist, then such vertex has an infinite life. The set L(G) of all verteces
with an infinite life can be written as

Lo(G)= [ V).

0<a<oo

In general, we get f(V) C V, hence we get a sequence of the vertex sets of
dynamical subgraphs:

Vo fWV)ofAV)D fA(V)D - D Lo(G).

The set £,,(G) of all verteces of life n coincides with the difference f*=1(V)\ f*(V).
For example,

L1(G) ={v eV | deg(v) =0}
In particular, if G is a union of cycles(defined below), then G = L, (G).

Remark 3. The life of verteces measures a degree of shrinking of the world at
each vertex in the course of time.

For a subset U C V, the minimal subgraph (V(U), E') is called generated by
U,ifu,v € VT(U) and (u,v) € E imply (u,v) € E’. This will be denoted by (U).
Note that (U) is nothing but the dynamical subgraph whose vertex set coincides
with the future V*(U) of U, and of course, G = (V).

For a vertex v, the subgraph ({v}) is also simply denoted by (v), and then (v)
is connected.

§1..1 Regular Dynamical Graphs

Similarly as in the ordinary graph theory, we can define paths, cycles, periods
of cycles, connectivity, etc. For example, a subset C' = {vy,--- ,v,} of (mutually
different) verteces is called a cycle, if it satisfies

F(:) :{ Vit (Z: <p)

vy (i=Dp).

And the number p = p(C) is called the period of the cycle C. A cycle with a
period 1 consists of a single vertex, and is also called a fized point. The subgraph
(C') generated by C'is also called a cycle.



In dynamical graphs, there exist no paths connecting two cycles, and any con-
nected component(i.e. maximal connected subgraph) contains at most one cycle.
We call the cycle C' a limit cycle, if its connected component has a vertex point
other than C, or equivalently if the past of C' is actually larger than C.

A dynamical graph G = (V, E) is called connected, it V' (v)NV T (w) # 0 for any
verteces v, w € V. Maximal connected dynamical subgraphs are called connected
components (or simply components), and if a set U of verteces is contained in a
component G’ of GG, then G’ is called the component of U and is denoted by Gy .

A connected component G’ of a dynamical graph G is called regular, if it
contains actually one cycle C. Then we say that any subsets or verteces of G’
belong to the cycle C' or the C-family.

A dynamical graph G is called regular, if every component of G is regular.

Then we get easily the following.

Proposition 2 (i) Any finite dynamical graph is reqular.

In the following, assume that G is regular.

(ii) Any vertex v of infinite life belongs to a cycle. Hence the set Loo(G) is a
(disjoint) union of cycles.

(i) If the degree of every vertex is 1, then G itself is a union of cycles.

Proof.  Since |V| < oo Othere is a finite maximum life & = max,cv, g(v)<oo £().
Then we get

) )= ) V) =rEw).

0<a<oo 0<a<k

Any vertex v € f*(V) is of life oo, so v € f%(V) for any a € N. Since |V| < oo,
there is a vertex w such that v = f*(w) = f**(w) for some a; < as. We may
assume that v # f*(w) for a; < a < as. Then by putting b = as — a1, we get

folv) = frr(w) = f2(w) = v,
hence v generates a cycle C' with a period b. O

Now we define the notion of the height of verteces in regular components. Let
v be a vertex belonging to a cycle C. Define the height ht(v) = hto(v) as

{0 (ve Q)

ht(v) =
n (f"(v) € C, f™(v) ¢ C for any 0= m < n).



Let G' = (V', E’) be a regular component of a dynamical graph G, with the
cycle C. Let Fi(C) be the set of all verteces belonging to V' of height k&, i.e.

Fi(C) = Fi(C;G) ={v e V'(or V) | htc(v) = k}.

Then F(C) = Uy, > Fx(C) is a disjoint union, nothing but G’, and symbolically
G’ is drawn as

OC = Fo(C) « F1(C) -+ + Fi(C) + F1(C) - -~

Now we give an invariant for dynamical graphs. Let G = (V| E') be a dynamical
graph, then define the degree characteristic of G as the vector

Dg = (Da(0), Da(1), Da(2), Da(3), -+ ),

where

De(i)(= D(i)) = {v € V| deg(v) = i}|

is the number of verteces of degree i. We can write it also as a sum

Dg = Z Dg(i)ki,
i2 0

where k; is the vector with 1 in the i-th component and 0 in all other components.
If there is a number ¢ such that Dg(7) = 0 for any j > 4, then we write it
briefly as
D¢ = (Dg(0), Dg(1),- -+, Da(i — 1), Da(1)).

In the case of finite graphs G, we get

Y Dai)=|V| and Y iDg(i) = |V,

i20 i20

where the latter equality is well known as ) .~ ,iDq(i) = |E| in graph theory,
but |E| = |V] for finite dynamical graphs. -

We have many examples even in the case where V' C N, which will be assumed
in the rest of this article. In this case, we say G is a dynamical graph of numbers.
In the next subsection, we will give a few examples illustrating the notions defined
above.



§1..2 Some Examples of Dynamical Graphs of Numbers

Examples will be given as pairs of a set V' of verteces and a map f on V.

Ezample 1(Addition Graph). At first, we give the most trivial example.

Let V.= N. And for any a € N, let f(z) = z +a (x € V) and denote the
corresponding dynamical graph by A = G(f). The dynamical graph A' is drawn
as follows.

Al 0=1=2— - 2sn—on+l—-.

Hence, for n>1,
L,(AY)={n—-1}, L. (A)=0 and Dy = (1,00) = ko + o0k;.

The graph A! is connected and not regular.
For a > 1, the graph A® is no longer connected, and the number of connected
components is a and any components are not regular. For a = 2, the graph A? is

drawn as follows.

0—=2—=24—---=>2n—=-2n4+2— ---
1=-3=56—=-=2n—-1—=2n4+1—---

and for n=>1,
L.(AY)={i| (n—1)agi<na}, Lo(A?) =0 and Dae = (a,00).

Let k be a positive integer, and consider the above graphs modulo k. That is,
let V=I={ieN|0<i<k}and f(x) =2+ a (mod k) for € I;. The
corresponding dynamical graph G(f) is regular and denoted by Af.

If & and a are mutually prime (i.e. (k,a) = 1), then A{ itself is a cycle and for
n >0

L,(Ay) =0, Loo(A}) = I and Dag = (0, k) = kk .

For example, A% is drawn as follows.

0—3—6—>9—2

T

7T+—4 +—1+—8~—5

If £ and a are not mutually prime (i.e. (k,a) =d > 1), then the graph A{ has
d connected components which are cycles C; (1£i<d). For n > 0

;Cn(Ai) = @, ,COO(A%) = I, I(C’l) = (; and DAZ = (0, kﬁ) =kki.
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For example, A}, and A, are drawn as follows.

A4 . 8 D 9
10 62+ 73

4. Lol ) ol of] of)

Ezxample 2(Multiplication Graph).

Let V= N. And for any a € N, let f(x) = az (¢ € V) and denote the
corresponding dynamical graph by M* = G(f).

The dynamical graph M" is isomorphic with A°, and its every vertex is a fixed
point(cycle with period 1). Hence for n > 0

L,(MY =0, Lo(M") =N, F({n}) = {n} and Dy = (0, 00).

For a > 1, the dynamical graph M* has one cycle(fixed point) and infinite
components, each of which is isomorphic with A and so not regular. We get

L,(M*)={NeN|a"N (m<n), a" [N},

Loo(M*) = {0}, F({0}) = {0} and Dypa = (00,00) = 0ok + o0k .
In particular, £(M?) consists of all odd integer > 0, and M? is drawn as follows.
CO 142—+4—-8—-16—32—->64 — 128 — ---

3—+6—-12—-24 48 =96 —+ 192 — - .-

m=2n+1—2m — 4m — 8m — 16m — 32m — ---

Let k be a positive integer, and consider the above graphs modulo k. That
is,let V=1, ={i e N|0<i<k}and f(zr) = ar (mod k) for x € I. The
corresponding dynamical graph G(f) is regular and denoted by M. It always
contains the fixed point {0}.



If k and a are mutually prime (i.e. (k,a) = 1), then for n >0
Ln(My) =0, Loo(My) = I, F(My)) = My, Dy = (0, k) = Kk,

and the graph M} is a sum of cycles.

In the case where k and a are not mutually prime, there are various types of
graph structures.

For example, the graph MQZk will be a tree, if we omit the arrow from 0. Such
dyna-graph will be called a tree-like graph. Rigorously, a dyna-graph G is called
tree-like, if periods of any cycles are 1.

The fixed point C' = {0} is a unique cycle in M3, and for any n(0 < n<k),

L0(MZ) = Fiora(C) = {N € L | 2N (m < n), 2" IN},

Lo(M3) =C, F(C) = M2, and D2, = (21,0, 2F71) = 2k ~1j o 4 21y,

In particular, £;(M2,) consists of all odd integer > 0. For example, M7y is drawn

as follows.

s

The graph M, is also tree-like, and Loo(M,) = {0} , Lo(M),) = {ip | 1=i <
P},

EI(M52> = {n S ]p2 | D Xn}, and ]D)M;rQ :p(p — ]-)kO +pkp

For the mixed type such as k = 10 = 2 x 5 or 100 = 22 x 52, the structures
of graphs will be more complicated. M3, has two cycles Cp = {0} and C; =
{2,4,8,6}, and

‘F1<CU) = {5}’ ‘Fl(cl) = {177a973}7 DMfO = (57075) = IL7)]1‘{0 + 5k27



Lo = L1(M?)UL (M), Li(ME) = {odd numbers}, Lo.(M7,) = {even numbers}.

The graph ME is drawn as follows.
1 7
Ny

~—38

3/ \9

The graph ME,, has three cycles Cy, Cy, Cy, where
Co = {0}, C; = {20,40, 80,60},

Co={ne€lip|n=0 (mod4),n#£0 (mod?5)},
F(Co) ={n € Lo [ n=0 (mod 25)},
F(C)={n€hp|n=0 (modb),nz0 (mod25)},
F(Cy) ={necho|n#0 (modb5)}, Dy = (50,0,50) = 50k + 50k,
Too = L1(Mipe) U La(Miyg) U Loo(Miyg),

El(Mfoo) = {n#0 (mod2)},
Lo(MZ,) = {n=0 (mod2),n#0 (mod4)},
Loo(ME) = {n=0 (mod 4)}.

M, is drawn as follows.

5l5 8l5
05— 10 70 ~—35
v
F(C)ol 0«50 0000 FC)O |
\75 60~— 80\
15— 30 90 ~—45
65 95
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51 27 7729 7933 8341 91
| NN N N/
01%02\ 54 5i8 66 82
OTHOSHIGHSQHMH
13
~
oy 720 H5T2
19
TSw3g .
C,)000 0" }6 C
2 47 2
TSngq
oo 7% 8T8
11
w99 .
o2 4f1
72H3T6H6T8H8T4H9T2H
43%86/ 18 34 42 46
T AN ANANA
93 09 59 17 67 21 7123 73
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5l7
14 ~—07
2l8
3
/
5678
89
03
/
1206
l 53
31
/
24 ~— 62
g1
sgerp
l 87
96
98 ~—49
99



Ezample 3(Polynomial Graph). Let V = N. And for any polynomial p(x) €
Niz], let f(z) = p(z) (z € N), and denote the corresponding dynamical graph
G(f) by P(p(x)).

Then the former examples are particular cases of polynoimal graphs: addition
graphs A* = P(x 4 a) and multiplication graphs M = P(ax).

The finite version is similar. Let k be a positive integer. Let V = I and
f(z) = p(x) (mod k) for z € I. The corresponding dynamical graph G(f) is
regular and denoted by Py(p(z)). Then A} = Py(z + a) and M = Py(ax).

In some sense, this is the most general case:

Proposition 3 Let G = (V, E) be a finite dynamical graph with n = |V|, then G
18 1somorphic with a polynomial graph on I,.

Proof. Any finite set is bijective with the section I,, = {i | 0= < n} of N.
Any function f on I, can be extended to a polynomial F'(z) such that F(i) =
f(@), i € I, (polynomial interpolation). O

Ezample 4 (Reduced Divisor Sum Graph). Let V = N.g, and

ki (i>1)
f(@) =< ki
1 (i=1)

The dynamical graph G corresponding to the map f is discussed in [2](see it
for drawings of some parts).

Many facts on perfect numbers, abundant numbers, deficient numbers, amica-
ble numbers, prime numbers, etc. can be described in terms of G.

Cy = {1} is a fixed point, and F1(Cy) = {prime numbers} by the definition
itself of prime numbers. It is easily seen that 2,5 has a life 1 (2,5 € £4(G)).
If we assume that Goldbach’s conjecture for even integers holds, then any odd
number > 6 has an infinite life, in particular, any prime number p(# 2, 5) belongs
to Loo(G) N F1(Cy).

Other fixed points are perfect numbers such as 6, 28,496, - - - (denote the i-th
perfect number by pf;, and Cy,s = {pf;}). Amicable numbers such as Cpp, =
{220,284} make cycles with peiord 2. For example, C,r = {6}, Cp,p, = {496},
Cam, are limit cycles, but Cpz, = {28} is not.

As for the futures, for v < 276 the subgraph (v) generated by v is finite, and be-
longs to the cycle Cy or Cpf, or Cp, 0r Cypp, . But I can’t determine whether (276)
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is regular or not. It seems to me that the graph (276) grows unboundedly, so is not
regular. For v< 1000, there are 12 verteces v = 276, 306, 396, 552, 564, 660, 696, 828,
840, 888, 966, 996 for which (v) may not be regular.

If v is small, for example, v< 1000, most of them(about more than 965) belongs
to the cycle Cy. So in [2], we say that for a prime number p, a vertex v € V™~ (p)
belongs to the family p, and we study the structures of the Cy-component by
statistical treatment.

If you want to use the notation of families in this aritcle, you can modify the
dynamical graph. Replace V with {v € N | v > 1}, and change the values of f
for prime numbers p to f(p) = p. Then C, = {p} is also a fixed point.

Similarly, we can consider transformations of dynamical graphs, which will be
convenient and useful for the study of the relations of dynamical graphs(see [4]
for details).

For illustraing the complexity of this dynamical graph, we note several facts.

F(12161) N 11000 - {120, 240, 504}, f11(12161) N 11000 == {120},
| F(321329) N Ligo| = 8, 318 € F34(321329), 330,498 € F3(321329),
’F(59) N ]100| - 1, |.F(59> N [200’ - 5, ‘I(59) N 1500‘ — 16, ‘JT"(59) N IlOOO| = 45,
138 € F177(59), 150 € ]:176(59)7 222 € f175(59),

168,234 € f174(59), 312 € F173<59>, 528 € .F172(59).

138 is the heighest vertex of height 177 among verteces of finite height in /9.

§2. Reversed Difference

Let Z = {0,1,2,3,4,5,6,7,8,9} be the set of figures, and N be the set of all
natural numbers.
For k > 0, consider the set

N, ={neN|0<n< 10"} = L

of k-figures as the set of verteces of our dynamical graph.
Then, by noting the isomorphism

k
©: 783 (ap, ap_1,- - ,a1) — Zailoi_l € N,
i=1
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of Z¥ with Nj,, we can define the inversion in Nj, through the order reversion

0 : 23 (ag, a1, van) = (@, a0, ay) € Z*
in Z*, as
n=g(p~tn))  (n€Ng).
Now we consider the dynamical system on Nj, defined by the map

For k = 4, this game has been familiar with mathematicians, like as a folk-
lore. Someone called it Kakutani’s game, and someone Kac’s game, since they
introduced it to Japanese mathematicians as a kind of recreation mathematics.

Denote by G, the dynamical graph corresponding to the map f;. Before dealing
with the graph G4, we study the structure of the graphs Gy, for k£ = 1,2, 3.

§2..1 Caseof k=1

In the case of k=1, V =N; and the map f = f; : V — V is given as
f(d)=|d—d| =00 hence Cp={0}=f(V).

Cy is the unique cycle, and the graph G; = G(f) is connected. So they are drawn
as follows.

1
=
Co:0 | ODON, =F(Cy):0 | 0« i (1<i<9)

N

§2..2 Case of £k =2

In the case of k =2, V =Ny and the map f = fy: V — V is given as
f(z) = |(10c + d) — (10d + ¢)| = 9|c — d|, (x=10c+d e V).
Hence V' is decomposed as a sum of invariant subsets:
V=1,Ul,
where
Iy={10c+d|c=d} =11Z and I, ={10c+d | c # d}.

14



The subgraph f(G2) consists of 10 verteces, and is obtained from G = Gy by
dropping out 90 verteces of life 1.
Denote by I; the f-image f(I;) (i = 0,1), then

Iy=Co={0} and I, = f(I;) =92* = {9, 18,27, 36,45, 54, 63, 72, 81},

where Z* = Z\ {0} = {1,2,3,4,5,6,7,8,9}. Since elements 10c + d of I satisfy
c+d =9, hence their images are odd. In fact, since |[c—d| = |c—(9—¢)| = |2¢—9|
is odd, f(10c 4+ d) = 9|c — d| is also odd. Let C} = I; N {odd numbers}, then
Cy D f(I1) but C} proves to be a cycle, hence C is the image of I;:

Ci=f(I1)={9—-81—-63—27—45—(9)}
The graph G has two cycles Cy and C) drawn as follows.
C ?4’81\
Co: 0 Oc,:0 45<727/63
and the subgraph (I;) generated by I; is F(C1) N f(G) and is drawn as follows.

54
T 9—81

() = (L(Gy)) : O f 63— 18
45—

72
36

§2..3 Case of k =3

In the case of £k =3, V = N3 and the map f = f3:V — V is given as
f(z) =1(100b 4 10c 4+ d) — (100d + 10c¢ + b)| = 99]b — d|

for x = 1006 + 10c + d € V. This case is quite similar as the case k = 2.
V' is decomposed as a sum of invariant subsets:

V:i()Uil,
where
Io = {100b4+10c+d | b=d} and I = {1000+ 10c+d | b # d}.
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The subgraph f(G) consists of 10 verteces, and is obtained from G = G3 by
dropping out 990 verteces of life 1.
Denote by I; the f-image f(I;) (i = 0,1), then

Ip=Cy={0} and [, =992 = {99,198,297,396,495,594,693,792,891}.
Since elements 100b + 10c + d of I satisfy b+ d =9, ¢ = 9, hence their images

are odd as in the case k = 2. Note I; is obtained from I;(G2) by inserting “9” in
the middle of the numbers in I;(G3) :

I;(Gs) = {100¢ + 90 + d | 10¢ + d € I;(G)},

and this procedure is equivariant under f5 and f3, that is, if 10a + b — 10c + d
in Gy, then 100a + 10z 4+ b — 100c 4+ 90 + d in G5 for any 2z € Z.

Let C; = I; N {odd numbers}, then C; D f(I;) but C; proves to be a cycle,
hence C is the image of I;:

Cy = f(I) = {99 — 891 — 693 — 297 — 495 — (99)}

The graph G has two cycles Cy and C) drawn as follows.

C 9T9H891\
Co:0 | 0000C,:0 693
495H297/

and the subgraph (I;) generated by I; is F(C1) N f(G) and is drawn as follows.

504
99 —891~_

(1) .0 693~—198
495H297/

792
396

§3. Case of k=14

Now consider the graph G = Gy, that is, let V = Ny and the map f = f; :
V' — V be given as

f(10%a +10*0+10c +d) = |(103%a + 10?0 + 10c + d) — (10*d + 10%c + 10b + a)|
= |999(a — d) +90(b — ¢)|.
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Decompose V' in a formal way as
V:j0Uj1Uj2UI~3Uj4,
where

Iy = {10°a+ 10’0+ 10c+d|a=d, b= c},
L = {10°a+ 10’0+ 10c+d | a=d, b # c},
I, = {10°a+ 10’0+ 10c+d | a#d, b= c},
I; = {10°a+ 100+ 10c+d | (a — d)(b—c) > 0},
I, = {10°a+ 100+ 10c+d | (a — d)(b—c) < 0}.

It is easily seen that fo, fl and ]~2 are f-invariant, but fg and f4 are not so. But

there are invariant subsets I? of I; (i = 3,4):

I = {zels|a—d=b—c#0,%+5},
I = {zelJa—d=c—b#0}.

Each of these invariant subsets contains a cycle C; (0<i<4), and there are no

other cycles:

90 —810

Co={0},00C,:0O 6300 0 Cy: 06534, 2178

450 ~—270 ~

999—~8991-__ 0909— 8181
6010 C, -0 | 6363

CQ O
4995~— 2997/ 4545+— 2727/

Denote f(I;) by I; and f(I°) by I? , then I, = Cy,

I, = 90Z* =101,(Gy) D Cy,
I, = 9997 = 1111,(G5) D Oy,
I) = 1089(Z*\ {5}) D Cs,

I) = 9092* =1011,(Gy) D Cy.

Thus the subgraphs (I}), (I5), (I?) are obtained from the subgraph (I;(G5)) of
G, by adding “0” from the left and right sides of, inserting “99” in the middle
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of, and repeating twice the numbers in [;(Gs2) respectively. These procedures are

equivariant with fo and f;.

Since there are many verteces of life 1, it is convenient to deal with the image

graph f(G4):
V(f(G4)) - I() U Il U IQ U Ig U ]4,

whose members sum up to 181, since
|Io‘ :1, ’]1|:|IQ‘ :9, |13|I‘I4‘ =9 x9=28I1.

I; (i£2) are f-invariant, but I3 and I, are not. So let us look at f3 and I, more

closely. For ¢ = 3,4, decompose I as

I = U ij,z‘a

0S54

where

Let I;; = f(I;;) C fj, then I;’s are decomposed as

L= |J Lis and Li= ] ILa
0S54 3554

Note that f is written as

(@) 999|a — d| + 90|b — ¢| (z € I3)
xIr) = -
999|a — d| —90|b — ¢| (z € ILy)

Explicitly, the sets above are expressed as

s = {t=10%a+ 100 +10c+de s |a—d=0b—c==+5},
Ls = {zels|la—d =5]b—c|#5},
Ls = {zecls|la—d #5,|b—c| =5},
Ly = {zecls|la—d||b—c|<4, or|a—d|,|b—c|>6} DI,
Lis = {zels|la—d<4,|b—c=6, or|a—d|=6,|b—c|<4}.

1:473 contains the set

f273:{x6f3 | la—d|+|b—¢| =10,|a —d|,|b—c| # 5} = Isn fH{ID).

18



The map f is explicitly given as

flx) = 1089)a—d|, (z€lhzUld)
flx) = 49954+ 90b—¢|, (z€1ls)
f(x) 450 4 999ja — d|,  (z € L3)
fx) = 900+909a—d|, (z€lf,)

hence
[Tos| =1, |L13] = |l23| =8, |I33] = [143] = 32.

More explicitly,

Ins = {5445} belongs to the Cy-family of height 1,

I, 5 = {5085, 5175, 5265, 5355, 5535, 5625, 5715, 5805} belongs to the Ci-family
of height 2,

I = {1449, 2448, 3447, 4446, 6444, 7443, 8442, 9441} belongs to the Cy-family
of height 2,

I33=13U 1%, U Lz, |I33] =32=8+8+16,

0 1,%; = LN f71(I75) = {1359,2268, 3177, 4086, 6804, 7713, 8622, 9531} be-
longs to the C)-family of height 3,

O Iy =Is3 \ (I3 U L53),

O = {1179, 1269, 2088, 2358, 3087, 3357, 4176, 4266 }

00 U {9711, 9621, 8802, 8532, 7803, 7533, 6714, 6624}

Lig=1I03Uly,  |Lis|=32=8+24,

IP5(= Iz N I9) = {1809, 2718,3627,4536, 6354, 7263, 8172,9081} belongs to
the Cy-family of height 20

j4,3 = 14,3 \ [273

0 = {1359, 1629, 1719, 2538, 2628, 2808, 3537, 3717, 3807, 4626, 4716, 4806 }

00 u{9531,9261,9171, 8352, 8262, 8082, 7353, 7173, 7083, 6264, 6174, 6084}

The image of I is also contained in itself, so will be denoted by I3. Then

19 = {1089, 2178, 3267, 4356, 6534, 7623, 8712, 9801},

f(I9) = {2178,4356, 6534, 8712}, (1Y) = C5 = {2178, 6534}.
3 3

As for Iy = I34 U Iy, decompose I34 and Iyy as follows.
I30=1lo34V Ii?A U 12,3,4 U 3.4, |I34] =2+ 646+ 26 = 40
O Tosa = 1o f(1o3) = {2277, 7722},

0 19, = I, N f7(19) = {1188, 3366, 4455, 5544, 6633, 8811},
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0I5, = LN f71(I95) = {459,5904,1368,3186,6813,8631} belongs to the
Cy-family of height 3.

0 Iya =T34\ (Joga UL, UIL; )

00 = {369,279, 189, 6903, 7902, 8901}

000 U{1458,1278,2457,2367,2187, 3456, 3276, 4365, 4275, 4685 }

000 u{8541,8721,7542,7632, 7812, 6543, 6723, 5634, 5724, 5864} .

Iy =19 U Iy, [Ly4] =9+ 32 =41,

O Iy =T\ 1Y

00 = {819,729, 639, 549, 1908, 2007, 3906, 4905}

000 U{1728,1638, 1548, 2817, 2637, 2547, 3816, 3726, 3546, 4815, 4725, 4635}
000 U{8271,8361, 8451, 7182, 7362, 7452, 6183, 6273, 6453, 5184, 5274, 5364 .
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4. Drawings of the Dynamical Graph G4

Let F(C;) and F(C;) be the set of verteces belonging to the cycle C; in V = Ny
and f(V) respectively. And let F,(C;) and Fy(C;) be their subsets consisiting of
verteces of height k | i.e.

N,= | F), F)=JRWC).

0<i<4
fNy = |J F©),  F@) =R,
0<i<4 k=0

Fi(C) = {zeNy| fMz) e Cy, fF(x) ¢ G},
Fe(Ci) = f(N9) N Fi(Ci) = f(Frsr(Ch)),

where the unions on k are actually finite unions.

The graph G, exhibits an interesting phenomena: “gate”.

Any vertex x € f(Ny) belongs to some Fi(C;). For a subset X of F(C;), x
is called a gate for X, if X is contained in the past of x. In the case where
X = Fu(C;) with some h > k, z is a gate for X, if fA7%(X) = x.

2277

/
OO : @) oo <IO73> : CO <+ 5445 0 <107374> -0 CO < 5445
\7722

So, 5445 is a gate for F5(Cp), and

./_"0(00) = Co, fl(C()) = 1073 = {5445}, fg(Co) = 1073’4 = {2277, 7722}

CCO o3 < Ip3a 0o ‘I(CO)‘ =4
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540
\

90 —~810 ~__ QF»810
C, 630 00 (1) : 630 ~— 180
450 ~—270 ~ ///,450 ~—270 7
720 e
1
5175
50
5715 90 —~810 ~__ 535
(L) O 630 +—180
5085 450 ~— 270 5535
T T 5265
720
5805~ 360::::
5625
F(Cy)
2187 < 3906 1908 1908 6453
262
//9351 //6183 //3546 //8 6
7353 2907 5634 2628
5625 < 7812 9367+ 3816<f3537// // 782
1185 1269 ~ 4365 %2817 2547,/g§;2
/ /
360 ~ 5265~ 7632 < 1629 ~ 5814 ~ 8352 — 9621 < 189 ~-4905
\\ 8802 7452 « 1719
9538 « 6714 % 2088 9171
9261 + 369 + 4815 7533

5184 41763357
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7902
/—

5805
7205//5085<\\2457
7542
270—4 1
70430 5175
5355 o 00+ 540
180 — 630~—810 5715
5535
So,

Fo(Cr) = C1, Fo(Ch) = L\ C, F2(Ch) = 3.

5265 € I3 = F»(Ch) is a gate for Fi(Cy) for k > 3, and |J,., Fr(C1)| =
66 — 17 = 49. The connected component F(C;) of C} has 66 verteces.

5994
999—8991~__ 9?9*8991
C, 60830 0 0 (L) 6993«— 1998
4995<44—2997‘/// 4995<44—2997‘///
7992
3996
244
8
5994
8442 999— 8991 et
(Iy3) O 60931008
1449 4995 ~— 2997 6444
000 | sur
0441 3906
‘\\\7443
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F(Cy)

5364
172
S0 g0z OULT DA A °
6264 729 6543 %8271
4806 J 729 /
4 6723 <1638 <~ 4626 ’/ﬂ73 0637
7ad3 =128 8541 30873456 3717 203
| / AT25 47362
3996 ~—— 3447 3276 ~ 7083 + 1458 — 4716+ 7803 8901 < 549+ 5274 — 2808
\ o7 8082
6174853251179
6624
380769031548 \
Ngusp 235844266
o4l om0
7992 4275
| 14495 572
~2097 — 4 244
097 —~ 4995 __ 2448
4446 e | 999+5994 %
1998— 6993 ~—8991 8442
6444
So,

Fo(Cp) = Oy, Fi(C) = I\ Oy, F2(Co) = 3.

3996 € F1(Cy) is a gate for F,(Cy) for k > 2, and ||J,o; Fi(Cs)| = 66 —9 = 57.
The connected component F(Cy) of Cy has 66 verteces.

9801 7623
C;:06534.__2178 Qo (19) 8712 — 6534 " 2178 « 4356
1089 3267
1188
9801 7623:1::
8811
(13,) : 8712 — 6534 " 2178 «+ 4356
’ 4455 AN 3366
s’ 3267+

5544~ 24 6633



So,
Fo(Cs) = Cs, F1(Cs) = {4356,8712}, Fo(Cs) = {1089, 3267, 7623,9801},

and
Fs(Cs) =105, F(Cs)= |J FulCy).
0Sk<3
Note
I} = C3U Fi(Cs) U Fp(C3) and | F(C3)| =2+ 2+ 4+ 6 = 14.

5454
0909—=8181~__ 0909— 8181

e 63630 0 (10 - I 6363<— 1818
454527277 454527277

7272
3636

8172 9098181~ 4536
/
(19, 0 6363~ 1818

/ \
1809 4545+—2727 6354
\

7979 3627
0081~ 3636~
7263

F(Cy)

4086

6804—22718
\
130 s 13
0531—8172 009—~8181~__ 4536 + 3177

/
Ci 63631818

59041809 45452727 TN6354 + 2268
7212 | 36273186 8622
450 —0081 3636 6813
7263— 1368

8631
25



So,
Fo(Cy) = Cy, Fi(Cy) = I)\ Cy, Fo(Cy) = I3,

|F(Cy)| =5+4+8+14 =31.
The maximum height in f(Ny) is 11, and |F11(C1)| = |F11(Cs)| = 4, and the
sizes of connected components F(C;) of f(Ny) are

[F(Co)l =4, |F(C)| =66, |F(Cy)| =066, [F(Cs)=14, [F(Cy)| =31,

and sum up to 4 + 66 + 66 + 14 4+ 31 = 181 = | f(Ny)].
In the above graphs, there are numbers with underlines. The order reversions
of those numbers are not in f(Ny), so the image graph f(Ny) is not invariant

under the reversion.
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